中文  |  ENGLISH

Concentrated Solar Power Gets Supercritical CO2 Makeover

2020.11.26     From: helioscsp

Concentrating solar power may have finally found its one true love: supercritical carbon dioxide, aka sCO2, which is something that happens when carbon dioxide gas behaves like a liquid. The electricity generation field is all aflutter with the idea that sCO2 can ramp up power plant efficiency while cutting costs, and concentrating solar power could be just the ticket. Wait, how does that even make sense?

 

In the olden days, fossil fuels and nuclear energy would have been the go-to energy applications for sCO2, but nowadays the Energy Department’s Supercritical CO2 Tech Team is also exploring other options, including shipboard power, waste heat recovery, and geothermal energy as well as concentrating solar power.


concentrating solar power renewable energy

 

The concentrating solar power angle is an interesting twist. The technology was championed by the Energy Department during the Obama administration. For those of you new to the topic, it involves collecting solar energy from fields of mirrors called heliostats, or from long troughs, and using it to heat a specialized oil or molten salt, which can then be used to generate electricity in a power station.

 

If that sounds both simple and complicated at the same time, it is. Concentrating solar power initially got a bad rap due to its relatively high cost, but the tradeoff is something that renewable energy fans dream about: the ability to replace conventional power plants with 24/7 clean electricity. The heated oil, salt, or whatever acts as built-in energy storage, enabling the plant to continue generating electricity at night.

 

The US Department of Energy has indeed been eyeballing the high efficiency of sCO2 to help reduce the cost of concentrating solar power, and that brings us to the latest coal-killing news. President Trump* has just a few weeks left in office, but it appears that he has left US coal workers a love letter (the bad kind, not the good kind) in the form of a $39 million Energy Department grant to a concentrating solar power firm called Heliogen.

 

The $39 million grant is a decent slice out of the Energy Department’s newly announced $130 million round of funding through its Solar Energy Technologies Office. That’s interesting because some energy industry observers are feeling like concentrating solar doesn’t make sense unless you apply it to oil and gas extraction, which kind of defeats the whole purpose of renewable energy.

 

Nevertheless, what’s sauce for the goose is sauce for the gander, as they say. Demand for oil and gas is set for a long, hard fall, meaning that the extraction market for CSP is going to dry up, eventually.


If and when it does, the Energy Department is already eyeballing the industrial market, as concentrating solar can produce the high heat needed in many processes that currently rely on fossil fuels.

 

Bringing Down The Cost Of Concentrating Solar Power

 

“Ensuring low-cost, reliable electricity for all Americans while minimizing risk is a top priority for this department,” US Energy Secretary Dan Brouillette said when he introduced the new $130 million round of solar funding.


No kidding! With that send-off, Heliogen is tasked with overseeing a SETO initiative called “Integrated Thermal Energy STorage and Brayton Cycle Equipment Demonstration,” or Integrated TESTBED for short.

 

 “The supercritical carbon dioxide (sCO2) Brayton cycle carries great potential for a high‐efficiency, low‐capital-cost option,” SETO explains. “This project team will develop, build, and operate an sCO2 power cycle integrated with thermal energy storage at temperatures in the range of 550°C to 630°C at a new or existing facility.”

 

“The goal of this topic is to accelerate the commercialization of the sCO2 Brayton cycle and provide operational experience for utilities, operators, and CSP developers,” SETO adds.

 

As the awardee, Heliogen will put up $31 million in cost sharing for the new system, which is expected to deploy readily available stainless steel alloys. That’s an important point because one of the challenges of sCO2 involves stress on system materials.




Upcoming CSP events:


11th CSP Focus China 2021 (March, Beijing China) 

5th CSP Focus MENA 2021(Time TBA,Dubai, UAE)


More CSP news and reports please visit www.cspfocus.cn 

or CSP Focus social media on LinkedInTwitterFacebook.


Leave your thoughts here

Reports(Member Only)

See more+

Upcoming Events

See more+

Project Updates

See more+

CONTACT US

Tex:

Email:csp@cspfocus.cn


备案/许可证编号为:沪ICP备17051021号

Wechat public platform

Follow CSP Focus for more news