Home > Market > Other Regions > Here
Sandia will compete to build a high temperature concentrated solar power pilot plant
2018.05.21 From: helioscsp
Sandia National Laboratories will receive $10.5 million from the Department of Energy to research and design a cheaper and more efficient solar energy system.
The work focuses on refining a specific type of utility-scale solar energy technology that uses mirrors to reflect and concentrate sunlight onto a receiver on a tower. The heat from the concentrated sunlight is absorbed by either a liquid, gas or solid and stored or used immediately in a heat exchanger to generate electricity. This type of energy, called concentrating solar power, is appealing because it can supply renewable energy — even when the sun is not shining — without using batteries for storage.
Current concentrating solar power systems can heat a substance to 565 degrees Celsius. The goal of this new project is to reach temperatures greater than 700 C, which would boost efficiency and lower the cost of electricity generated from concentrating solar power.
Technologists John Kelton (retired), left, and Daniel Ray perform inspections of the falling-particle receiver during a cloud delay atop the National Solar Thermal Test Facility’s Solar Tower at Sandia National Laboratories.
Credit: Photo by Randy Montoya
Sandia National Laboratories’ Josh Christian works with the falling particle receiver during a test. Sandia will receive $10.5 million from the Department of Energy to help make concentrating solar power cheaper and more efficient.
Sandia is leading one of three teams selected by the department’s Solar Energy Technologies Office to compete to build a high temperature concentrating solar power system with built-in heat storage. Sandia’s proposed system uses sand-like ceramic particles to absorb and store the heat from the concentrated sunlight. Sandia already has developed the world’s first high-temperature falling particle receiver, and this research will refine and integrate that system into a complete pilot plant.
“We have demonstrated a prototype for the continuously circulating falling particles, and now we are adding six hours of storage, a 1-megawatt heat exchanger and a particle lift to demonstrate the entire thermal system,” said Cliff Ho, Sandia’s lead engineer on the project. “We believe particles are the best option for going to higher temperatures for advanced power cycles. The particles are inexpensive, durable and non-corrosive. They can be stored directly, they don’t freeze and they can reach temperatures over 1000 C.”
During the first phase of the two-year project, Sandia will design and evaluate the key components of its proposed pilot plant and work to mitigate risks associated with falling particle and concentrating solar power technology. Ho said the team will focus on minimizing heat and particle losses from the receiver and identifying suitable designs for particle storage and a particle-to-working-fluid heat exchanger that will work for a large-scale power plant. The team will perform analyses to identify designs that meet both cost and performance goals for the Department of Energy.
During a second phase, the team will write a proposal that details the final concept for its proposed pilot plant. The DOE will also receive proposals from the two other teams and will choose one team to receive up to $25 million to construct and operate a pilot plant in the third phase of the program.
Sandia’s project partners are the National Renewable Energy Laboratory, Georgia Institute of Technology, King Saud University, Saudi Electricity Company, Commonwealth Scientific and Industrial Research Organisation, University of Adelaide, Australian National University, the German Aerospace Center (DLR), Electric Power Research Institute, Solar Dynamics, SolarReserve, Carbo Ceramics, Solex Thermal Science, Vacuum Process Engineering, Allied Mineral Products and others.
The U.S. Department of Energy Solar Energy Technologies Office supports early-stage research and development to improve the affordability, reliability and performance of solar technologies on the grid. Learn more at energy.gov/solar-office
Sandia National Laboratories is a multimission laboratory operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration. Sandia Labs has major research and development responsibilities in nuclear deterrence, global security, defense, energy technologies and economic competitiveness, with main facilities in Albuquerque, New Mexico, and Livermore, California.
Relevant CSP Conference:CSP Focus MENA 2018(June 27-28,Marrakeck Morocco)
More from CSP Focus
NextConfirmed Speakers and Panelists of 11th CSP Focus China 2021
Industry Shares its Experience to Advance Next Generation CSP
Spain's Ence to sell majority stake in 50-MW CSP plant in Puertollano
Shanghai Electric reports on Dubai 950MW CSP+PV solar power project
Delingha, China's first commercial concentrated solar power plant produces electricity
Morocco and Renewable Energy Sector--The largest solar park in the world
Middle East and North Africa’s Concentrated Solar Power Knowledge and Innovation Program
Concentrated Solar Power electricity: an essential building block for the energy transition
The Noor Ouarzazate III central receiver solar plant with storage completes its reliability test
Leave your thoughts here
Free Reports
See more+-
Dubai 950MW NOOR Energy 1 CSP+PV Project
The $4.4 billion Noor Energy 1 solar thermal project will be the world’s largest CSP plant and includes a 100 MW CSP tower plant, three 200 MW parabolic trough CSP systems, 250 MW of PV capacity and 15 hours of molten salt CSP storage capacity.
-
China Large-scale CSP Projects Update
Updating--Jan., 2020 Edition24 pagesPart 1: Background and Fact Sheet (P1-11) · Implementation and adjustment of 1st batch of CSP demonstrations· FiT policy update and prediction· Sum-up on the 20 projects technology, location, ownership and key participants Part 2: Milestones of Ch
-
Suppliers List of China Key CSP Projects (Updating)
13 key concentrated solar power projects in China undergoing:Shouhang Dunhuang 100MW Molten Salt Parabolic Trough ProjectRoyal Tech Yumen 50MW Parabolic Trough ProjectDCTC Dunhuang 50MW MS CLFR ProjectRayspower Yumen 50MW Trough ProjectCNNC Royal Tech Urad 100MW Parabolic Trough ProjectSupcon Delingha 50MW Molten Salt Tower ProjectLuNeng Haixi 50 MW Solar Thermal Tower Plant ProjectPower C
-
Construction and Operation of SUPCON SOLAR Delingha 50MW Tower CSP Project
40 pages in totalCompany Profile (P3-4)Construction of Delingha 50MW Tower CSP Project (P6-17)Operation of Delingha 50MW Tower CSP Project (P18-30)Issues during Commissioning and Operation (P31-39)
Upcoming Events
See more+-
12th CSP Focus China 2022
2022.04.21-22 Beijing
-
11th CSP Focus China 2021
2021.10.28-29 Beijing
-
10th CSP Focus China 2020
2020.10.22-23 Beijing, China
Project Updates
See more+-
Luneng Haixi 50MW Molten Salt Tower CSP Project
Asia Pacific-China,Under construction,Power Tower
-
Dubai 950MW NOOR Energy 1 CSP+PV Project
MENA-UAE,Under construction,Power Tower
-
Power China Gonghe 50MW Molten Salt Tower CSP Project
Asia Pacific-China,Under construction,Power Tower
-
Supcon Delingha 50MW Molten Salt Tower CSP Project
Asia Pacific-China,Under construction,Power Tower